Analysis Of Overdispersion Data Using Poisson Invers Gaussian Regression Model

  • Marsono Marsono BPS Provinsi Sulawesi Barat
Keywords: Overdispersi, Poisson Invers Gaussian, Model Poisson, Kematian Bayi

Abstract

 

Salah satu pelanggaran asumsi dalam model regresi Poisson pada kebanyakan data count (cacahan) adalah ditemukan kasus overdispersi, dimana varians variabel respon lebih besar dari rata-ratanya. Untuk mengatasi kasus overdispersi, dibentuk model regresi yang merupakan perpaduan antara distribusi Poisson dengan beberapa distribusi lain. Poisson Invers Gaussian (PIG) merupakan salah satu model regresi dari model campuran untuk mengatasi overdispersi. Penelitian ini membandingkan model regresi Poisson Invers Gaussian dengan model regresi Poisson bertujuan mengetahui variabel-variabel yang mempengaruhi jumlah kasus bayi mati di Provinsi Jawa Timur pada tahun 2019. Penaksiran parameter regresi PIG dilakukan dengan metode Maximum Likelihood Estimator (MLE). Berdasarkan nilai AIC paling kecil diketahui model regresi Poisson Invers Gaussian lebih baik dari model regresi Poisson.

Downloads

Download data is not yet available.

References

Cameron, A. C dan Trivedi, P. K. (1998), Regression Analysis of Count Data, Cambridge University Press, USA.
Consul, P. C. dan Famoye, F. (1992), “Generalized Poisson Regression Model”, Communications in Statistics - Theory and Methods, Vol. 21, No. 1, hal. 89-109.
Déniz, E. G., Ghitany, M. E. dan Gupta, R. C. (2014), “Poisson-Mixed Inverse Gaussian Regression Model and Its Application”, Communications in Statistics - Simulation and Computation, DOI: 10.1080/03610918.2014.925924.
Hilbe, J.M. (2007), Negative Binomial Regression, 1st edition, Cambridge University, Press., New York.
Hu, M. C., Pavlicova, M. dan Nunes, E. V. (2011), “Zero-Inflated and Hurdle Models of Count Data with Extra Zeros: Examples from an HIV-Risk Reduction Intervention Trial”, The American Journal of Drug and Alcohol Abuse, Vol. 37, hal. 367-375.
Jong, P. dan Heller, G. Z. (2008), Generalized Linear Models for Insurance Data, 1st edition, Cambridge University, Press., New York.
Karlis, D. dan Nikoloulopoulos, E. (2005), “Mixed Poisson Distribution”, International Statistical Review, Vol. 73, No. 1, hal. 35-58.
McCullagh, P. dan Nelder, J. A. (1989), Generalized Linear Models 2nd Edition. Chapman and Hall, London.
Ozdemir, T. dan Eyduran, E. (2005), “Comparison of Chi – Square and Likelihood Ratio Chi – Square Tests: Power of Test”, Journal of Applied Sciences Research, University of Yuzuncu, Hal. 242-244.
Shoukri, M. M., Asyali, M. H., Vandorp, R. dan Kelton, R. (2004), “The Poisson Inverse Gaussian Regression Model in the Analysis of Clustered Counts Data”, Journal of Data Science, Vol. 2, No. 2, Hal. 17-32.
Stasinopoulus, D. M. dan Rigby, R. A. (2007), “Generalized Additive Models for Location Scale and Shape”, Journal of Statistical Software, Vol. 23, Hal.1-46.
Willmot, G. E. (1987), “The Poisson-Inverse Gaussian Distribution as An Alternative to the Negative Binomial”, Scandinavian Actuarial Journal, Vol. 3, No. 4, hal. 113-127.
Zha, L., Lord, D. dan Zou, Y. (2014), “The Poisson Inverse Gaussian (PIG) Generalized Linear Regression Model for Analyzing Motor Vehicle Crash Data”, Journal of Transportation Safety and Security, DOI:20.2080/19439962.2014.977502.
Published
2023-07-31
How to Cite
Marsono, M. (2023). Analysis Of Overdispersion Data Using Poisson Invers Gaussian Regression Model. SAINTIFIK, 9(2), 291 - 298. https://doi.org/10.31605/saintifik.v9i2.409