Karekterisasi, Kinetika, dan Isoterm Adsorpsi Limbah Ampas Kelapa sebagai Adsorben Ion Cu(II)

  • Agusriyadin Agusriyadin
Keywords: Residu ampas kelapa, Adsorpsi, ion Cu (II), Kapasitas adsorpsi

Abstract

Penelitian ini bertujuan untuk menguji kemampuan AK dan AKPM dalam mengadsorpsi ion Cu (II), pengaruh parameter adsorpsi dan mekanisme adsorpsi. AK dan AKP Madsorben dibuat dari residu ampas kelapa. Adsorben dikarakterisasi dengan FTIR, SEM dan EDS. Pengaruh parameter adsorpsi seperti pH awal, dosis adsorben, waktu kontak dan konsentrasi ion Cu (II) awal diperiksa untuk menentukan kondisi optimum serapan tembaga (II). Ion Cu (II) yang teradsorpsi diukur berdasarkan pada konsentrasi Ion Cu (II) sebelum dan sesudah adsorpsi menggunakan metode AAS. Hasil karakterisasi menunjukkan bahwa struktur pori dan gugus fungsi tersedia pada permukaan adsorben. Menurut percobaan efek pH, kapasitas adsorpsi maksimum dicapai pada pH 7. Waktu kontak optimal dan konsentrasi tembaga awal (II) ditemukan masing-masing pada 120 menit dan 100 mg L-1. Data eksperimental sesuai dengan model kinetik orde dua orde dua, dan Langmuir isoterm adsorpsi yang diperoleh paling sesuai dengan data adsorpsi. Kapasitas adsorpsi maksimum adsorben ditemukan menjadi 4,73 dan 6,46 mg g-1 pada kondisi optimal.

The results of characterization showed that the pore structure and the functional groups were available on adsorbent surface. According to the pH effect experiments, the maximum adsorption capacity was achieved at pH 7. Optimum contact time and initial copper(II) concentration were found at 120 min and 100 mg L-1, respectively. The experimental data were comply with the pseudo-second-order kinetic model, and Langmuir adsorption isotherm obtained best fitted the adsorption data. The maximum adsorption capacity of the adsorbents was found to be 4.73 and 6.46 mg g-1 at optimum conditions.

Downloads

Download data is not yet available.

References

Adamson, A.W., 1990, Physical Chemistryof Surfaces,6th Ed.,John Wiley and Sons, Inc., New York.

Ahmed S.A., 2011, Batch and Fixed-Bed Column Techniques for Removal of Cu(II) and Fe(III) usingCarbohydrate Natural Polymer Modified Complexing AgentsCarbohydrate Polymers,83, 1470–1478. DOI: https://doi.org/10.1016/j.carbpol.2010.09.051

Al-Ghouti, M.A., Li J., Salamh Y., Al-Laqtah N., Walker G. and Ahmad M. N.M., 2010, Adsorption Mechanisms of Removing Heavy Metals and Dyes from AqueousSolution using Date Pits Solid Adsorbent, J. Hazard. Mater 176, 510–520. DOI: https://doi.org/10.1016/j.jhazmat.2009.11.059

Barcelo, D., 2001, Modern Fourier Transform Infrared Spectroscopy Vol.35, Wilson and Wilson’s, Inc., New York.

Bilal, M., Shah, J.A., Ashfaq, T., Gardazi, S.M.H., Tahir, A.A., Pervez, A., Haroon, H. and Mahmood, Q., 2013, Waste Biomass Adsorbents for copper Removal from IndustrialWastewater, A Review, DOI: https://doi.org/10.1016/j.jhazmat.2013.07.071

Castellan, G.W., 1982, Phisical Chemistry, 3rd Ed, General Graphic Services, New York.

Farooq U., Kozinski J.A., Khan M.A.and Athar M., 2010, Biosorption of Heavy Metal Ions using Wheat Based Biosorbents, A Reviewof The Recent Literature, Bioresour. Technol.,101, 5043–5053. DOI: https://doi.org/10.1016/j.biortech.2010.02.030

Florido A., Valderrama C., Arévalo J.A., Casas I., Martínez M.and Miralles N., 2010, Application of Two Sites Non-equilibrium Sorption Model for the Removal of Cu(II)onto Grape Stalk Wastes in a Fixed-bed Column,Chem. Eng. J., 156, 298–304. DOI: https://doi.org/10.1016/j.cej.2009.10.020

Gorgievski M., Bozic D., Stankovic V., Strbac N. and Serbula S., 2013, Kinetics, Equilibrium and Mechanism of Cu2+, Ni2+ and Zn2+ IonsBiosorption using Wheat Straw, Ecol.Eng.,58, 113– 122. DOI: https://doi.org/10.1016/j.ecoleng.2013.06.025

Hansen, H.K., Arancibia, F. and Gutiérrez, C., 2010 Adsorption of Copper onto Agriculture Waste Materials, J. Hazard. Mater., 180, 442–448. DOI: https://doi.org/10.1016/j.jhazmat.2010.04.050

Iqbal, M., Saeed, A. and Zafar, S.I., 2009, FTIR Spectrophotometry, Kinetics and Adsorption Isotherms Modeling, IonExchange, and EDX Analysis for Understanding the Mechanism of Cd2+ andPb2+Removal by MangoPeel WasteJ. Hazard. Mater 164, 161–171. DOI: https://doi.org/10.1016/j.jhazmat.2008.07.141

Jellali S., Wahab M.A., Hassine R.B., Hamzaoui A.H.and Bousselmi L., 2011, Adsorption Characteristics of Phosphorus from Aqueous Solutions onto Phosphate Mine Wastes, Chem.Eng. J.169, 157–165. DOI: https://doi.org/10.1016/j.cej.2011.02.076

Kamari A., Yusoff S.N.M., Abdullah F.and Putra W.P., 2014 Biosorptive Removal of Cu(II), Ni(II) and Pb(II) Ions from Aqueous Solutions using Coconut Dregs Residue: Adsorption and Characterisation Studies, J. Environ. Chem. Eng., 2, 1912–1919. DOI: https://doi.org/10.1016/j.jece.2014.08.014

Kapur, M. and Mondal, M.K., 2014, Competitive Sorption of Cu(II) and Ni(II) Ions from Aqueous Solutions: Kinetics, Thermodynamics and Desorption Studies,J. Taiwan. Inst. Chem.Eng., 45., 1803–1813. DOI: https://doi.org/10.1016/j.jtice.2014.02.022

Larous, S., Meniai, A.H. and Lehocine, M.B., 2005, Experimental Study of The Removal of Copper from AqueousSolutions by Adsorption using Sawdust, Desalination, 185, 483–490. DOI: https://doi.org/10.1016/j.desal.2005.03.090

Lasheen, M.R., Ammar, N.S. and Ibrahim, H.S., 2012, Adsorption/Desorption of Cd(II), Cu(II) and Pb(II) using Chemically ModifiedOrange Peel: Equilibrium and Kinetic Studies, Solid. State. Sci. 14, 202-210. DOI: https://doi.org/10.1016/j.solidstatesciences.2011.11.029

Li, Y., Yue, Q. and Gao, B., 2010, Adsorption Kinetics and Desorption of Cu(II) and Zn(II) from AqueousSolutiononto HumicAcid, J. Hazard. Mater.,178, 455–461. DOI: https://doi.org/10.1016/j.jhazmat.2010.01.103

Li, Y., Xia B., Zhao Q., Liu, F., Zhang P., Du, Q., Wang, D., Li, D., Wang, Z. and Xia, Y., 2011, Removal of Copper Ions from Aqueous Solution by Calcium AlginateImmobilized Kaolin, J.Environ. Sci., 23(3) 404–411. DOI: https://doi.org/10.1016/S1001-0742(10)60442-1

Lu, S., and Gibb, S.W., 2008, Copper Removal from Wastewater using Spent-Grain as Biosorbent, Bioresour. Technol., 99, 1509–1517. DOI: https://doi.org/10.1016/j.biortech.2007.04.024

Narsito, Nuryono dan Suyanta, 2004, KinetikaAdsorpsiZn(II) dan Cd(II) pada Silika Gel termodifikasi Hasil Pengolahan Abu SekamPadi, Laporan Hasil PenelitianIlmu Dasar, November 2004, Lembaga PenelitianUniversitas Gadjah Mada, Yogyakarta.

Ozsoy H.D. andKumbur H., 2006, Adsorption of Cu(II) Ions on CottonBoll, J. Hazard. Mater., 136, 911–916,doi:http://dx.doi.org/10.1016/j.jhaz- mat.2006.01.035. 16490303.

Pavia, D.L., Lampman, G.M., Kriz, G.S. and Vyvyan, J.R., 2009, Introduction to Spectroscopy, 4th Ed., Brooks/Cole Cengage Learning, Washington.

Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T.,Hefter, G., Sjöberg, S.and Wanner, H., 2007, Chemical Speciation of EnvironmentallySignificant Metals with Inorganic Ligands, Pure Appl. Chem., 5(70), 895–950. DOI: https://doi.org/10.1351/pac200779050895

Purawisastra, S. dan Sahara, E., 2010, Isolasi Ampas Kelapa Rumah Tangga dan Bungkil Industri Minyak Kelapa, Panel Gizi Makan, 1(33), 23-29. DOI: https://doi.org/10.37859/jp.v1i1.102

Purawisastra, S., 2011, The Use Of Various Ashes For Galactomannan Compound Isolationfrom Coconut Dregs, Teknologi Pencegahan Pencemaran Industri., 4(1), 260-266.

Singha, B. and Das, S.K., 2013 Adsorptive Removal of Cu(II) from Aqueous Solution and IndustrialEffluent using Natural/Agricultural WastesColloids Surf. B., 107., 97– 106. DOI: https://doi.org/10.1016/j.colsurfb.2013.01.060

Singh, V., Sethi, R.and Tiwari, A., 2009, Structure Elucidation and Properties of a Non-Ionic Galactomannan Derived fromThe Cassia pleurocarpaSeeds, Int. J. Biol.Macromol., 44, 9–13. DOI: https://doi.org/10.1016/j.ijbiomac.2008.09.012

Stumm, W. and Morgan, J.J., 1996, Aquatic Chemistry,3rd Ed, John Wiley and Sons Inc., New York.

Sud, D.,Mahajan, G.and Kaur, M.P., 2008, Agricultural Waste Material as Potential Adsorbent for SequesteringHeavy Metal Ions from Aqueous Solutions, A Review, Bioresour. Technol., 99, 6017–6027. DOI: https://doi.org/10.1016/j.biortech.2007.11.064

Volesky, B., 2007,ReviewBiosorption and Me, Water Res., 41, 4017 – 4029. DOI: https://doi.org/10.1016/j.watres.2007.05.062

Wang, J., and Chen, C., 2009, Biosorbents for Heavy Metals Removal and Their Future, Biotechnol. Adv., 27, 195–226. DOI: https://doi.org/10.1016/j.biotechadv.2008.11.002

Weng C.H., Lin Y.T., Hong D.Y., Sharma Y.C.,Chen S.C.and Tripathi K., 2014, Effective Removal of Copper Ions from Aqueous Solution using Basetreated Black Tea Waste, Ecol. Eng., 67,127–133. DOI: https://doi.org/10.1016/j.ecoleng.2014.03.053

Yan, C., Li, G., Xue, P., Wei, Q. and Li, Q., 2010, Competitive Effect of Cu(II) and Zn(II) on The Biosorption of Lead(II) byMyriophyllum spicatum, J. Hazard. Mater.,179, 721–728. DOI: https://doi.org/10.1016/j.jhazmat.2010.03.061

Yargic, A.S, Sahin, R.Z.Y., Ozbay, N. and Onal, E., 2014, Assessment of Toxic Copper(II) Biosorption from Aqueous Solution byChemically-Treated Tomato Waste (Solanum lycopersicum), J. lean. Pro., 1-8,doi:

http://dx.doi.org/10.1016/j.jclepro.2014.05.087 DOI: https://doi.org/10.1016/j.jclepro.2014.05.087

Published
2020-08-10
How to Cite
AgusriyadinA. (2020). Karekterisasi, Kinetika, dan Isoterm Adsorpsi Limbah Ampas Kelapa sebagai Adsorben Ion Cu(II). SAINTIFIK, 6(2), 104-115. https://doi.org/10.31605/saintifik.v6i2.265