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Abstrak

Penyakit campak merupakan penyakit menular yang disebabkan oleh virus dan masih menjadi masalah
kesehatan masyarakat, meskipun upaya pencegahan melalui imunisasi terus dilakukan. Salah satu pendekatan
untuk memahami dinamika penyebaran penyakit campak adalah melalui pemodelan matematika epidemiologi.
Penelitian ini mengkaji model epidemi tipe SIR (Susceptible—Infected—Recovered) pada penyakit campak dengan
memperhatikan adanya penurunan kekebalan tubuh, sehingga individu yang telah sembuh berpotensi kembali
menjadi rentan. Analisis dilakukan dengan menentukan titik ekuilibrium non-endemik dan endemik, menghitung
bilangan reproduksi dasar menggunakan metode next generation matrix yang melibatkan radius spektral, serta
menganalisis kestabilan titik ekuilibrium melalui matriks Jacobian. Hasil analisis menunjukkan bahwa titik
ekuilibrium non-endemik bersifat stabil asimtotik ketika nilai bilangan reproduksi dasar kurang dari satu, dan
menjadi tidak stabil ketika nilainya lebih besar dari satu. Simulasi numerik menggunakan perangkat lunak Matlab
mendukung hasil analisis teoretis serta menunjukkan bahwa penurunan kekebalan tubuh berpengaruh signifikan
terhadap dinamika jumlah individu pada masing-masing subpopulasi. Dengan demikian, model ini dapat
memberikan gambaran matematis mengenai pengaruh kekebalan terhadap keberlangsungan penyebaran penyakit
campak dalam suatu populasi tertutup.

Kata Kunci: Model SIR, Penyakit Campak, Titik Ekuilibrium, Bilangan Reproduksi Dasar, Kestabilan Model.

1. PENDAHULUAN

Penyakit campak (measles) merupakan penyakit menular yang disebabkan oleh virus campak dari genus
Morbillivirus dan famili Paramyxoviridae. Penyakit ini umumnya ditandai dengan gejala prodromal berupa
demam, batuk, pilek, dan konjungtivitis, yang kemudian diikuti dengan munculnya ruam makulopapular di seluruh
tubuh. Campak bersifat sangat menular dan dapat menimbulkan komplikasi serius seperti bronkitis, pneumonia,
hingga ensefalitis yang berpotensi menyebabkan kematian (Widoyono, 2008; Setiawan et al., 2008). Oleh karena
itu, campak masih menjadi salah satu permasalahan kesehatan masyarakat, khususnya di wilayah dengan cakupan
imunisasi yang belum optimal.

Upaya pencegahan penyakit campak telah dilakukan melalui program imunisasi. Menurut World Health
Organization (WHO), vaksinasi campak mampu menurunkan angka kematian akibat campak secara signifikan,
bahkan mencegah jutaan kematian secara global dalam kurun waktu dua dekade terakhir (WHO, 2019). Meskipun
demikian, dalam praktiknya masih ditemukan kasus campak berulang di beberapa wilayah. Hal ini menunjukkan
bahwa pengendalian penyakit campak tidak hanya dipengaruhi oleh tingkat vaksinasi, tetapi juga oleh faktor lain
seperti penurunan kekebalan tubuh pada individu yang sebelumnya telah sembuh atau divaksinasi.

Salah satu pendekatan yang dapat digunakan untuk memahami dinamika penyebaran penyakit menular
adalah melalui pemodelan matematika epidemiologi. Model epidemi tipe SIR (Susceptible—Infected—Recovered)
pertama kali diperkenalkan oleh Kermack dan McKendrick (1927) dan hingga kini banyak digunakan untuk
menganalisis penyebaran penyakit infeksi. Model ini membagi populasi ke dalam tiga subpopulasi utama, yaitu
individu rentan (susceptible), individu terinfeksi (infected), dan individu sembuh (recovered) (Murray, 2002).



http://creativecommons.org/licenses/by-nc/4.0/
mailto:bramit1112@gmail.com

https://jurnal.unsulbar.ac.id/index.php/saintifik

Seiring perkembangan penelitian, model SIR telah mengalami berbagai pengembangan, seperti penambahan faktor
vaksinasi, struktur umur, dan perubahan tingkat kekebalan tubuh (Hethcote, 2000; Brauer & Castillo-Chavez,
2000).

Beberapa penelitian terdahulu telah mengkaji model SIR pada berbagai penyakit menular, termasuk
penyakit campak. Lestari dan Tasman (2013) mengkaji pengaruh strategi pulse vaccination dalam pencegahan
penyebaran penyakit campak, sementara Abubakar et al. (2013) menganalisis bifurkasi pada model matematika
dinamika penyakit campak. Selain itu, Aulia et al. (2016) mengembangkan model epidemi dengan memperhatikan
peluang keberhasilan vaksinasi dan kekebalan tetap. Namun demikian, kajian yang secara khusus memperhatikan
kemungkinan individu yang telah sembuh kembali menjadi rentan akibat penurunan kekebalan tubuh masih relatif
terbatas, padahal kondisi tersebut berpotensi memengaruhi dinamika penyebaran penyakit dalam jangka panjang.

Berdasarkan uraian tersebut, penelitian ini bertujuan untuk mengkaji model matematika penyebaran
penyakit campak tipe SIR dengan memperhatikan penurunan kekebalan tubuh. Analisis dilakukan dengan
menentukan titik ekuilibrium non-endemik dan endemik, menghitung bilangan reproduksi dasar menggunakan
metode next generation matrix, serta menganalisis kestabilan sistem menggunakan matriks Jacobian. Selain itu,
dilakukan simulasi numerik untuk menggambarkan dinamika perubahan jumlah individu pada masing-masing
subpopulasi. Hasil penelitian ini diharapkan dapat memberikan pemahaman yang lebih mendalam mengenai
dinamika penyebaran penyakit campak serta menjadi dasar pertimbangan dalam perumusan strategi pengendalian
penyakit.

2. METODE PENELITIAN

Penelitian ini merupakan penelitian teoretis dengan pendekatan analitis dan numerik yang bertujuan untuk
mengkaji dinamika penyebaran penyakit campak menggunakan model matematika epidemiologi tipe SIR
(Susceptible—Infected—Recovered). Model yang digunakan dimodifikasi dengan memperhatikan adanya
penurunan kekebalan tubuh, sehingga individu yang telah sembuh memiliki kemungkinan kembali menjadi rentan
terhadap penyakit campak.

2.1 Jenis dan Pendekatan Penelitian

Pendekatan yang digunakan dalam penelitian ini adalah pendekatan kualitatif—kuantitatif melalui analisis
matematika. Analisis kualitatif dilakukan untuk mengkaji sifat-sifat model, seperti keberadaan titik ekuilibrium
dan kestabilannya, sedangkan analisis kuantitatif dilakukan melalui simulasi numerik untuk menggambarkan
perilaku solusi sistem persamaan diferensial.

2.2 Pembentukan Model

Model epidemi yang digunakan adalah model SIR dengan populasi tertutup, sehingga tidak terdapat
migrasi masuk maupun keluar dari populasi. Populasi dibagi ke dalam tiga subpopulasi, yaitu individu rentan
(Susceptible), individu terinfeksi (Infected), dan individu sembuh (Recovered). Dalam model ini diasumsikan
bahwa individu yang telah sembuh dapat kembali ke subpopulasi rentan akibat penurunan kekebalan tubuh. Model
dinyatakan dalam bentuk sistem persamaan diferensial nonlinear orde satu yang merepresentasikan laju perubahan
masing-masing subpopulasi terhadap waktu.

Model matematis epidemiologi SIR (Susceptible, Infected, Recovered) pertama kali diperkenalkan oleh
Kermack dan Mc. Kendrick pada tahun 1927. Model tersebut terdiri dari tiga kategori yaitu: susceptible (S) atau
individu yang rentan terserang penyakit, /nfected (I) atau individu yang terinfeksi dan dapat menyebarkan penyakit
tersebut kepada individu yang rentan dan recovered (R) atau individu yang diasumsikan telah sembuh atau
kekebalan tubuhnya telah kembali normal sehingga kebal terhadap penyakit (Murray, 2002).

Berikut ini merupakan asumsi-asumsi yang dibuat dalam pembentukan model penyebaran penyakit
campak tipe S/R dengan laju kematian yang beragam tiap subpopulasi.

1. Populasi tertutup (tidak ada migrasi).
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2. Individu yang sukses divaksinasi masuk ke subpopulasi R dan tidak sukses divaksinasi masuk ke
subpopulasi S.
3. Individu subpopulasi S yang kontak dengan individu subpopulasi /, masuk ke subpopulasi /.
4. Individu yang terinfeksi dan mengalami kekebalan alamiah masuk ke subpopulasi R.
5. Individu subpopulasi R yang mengalami penurunan kekebalan terhadap penyakit kembali ke subpopulasi
S.
6. Individu dalam masing-masing subpopulasi mengalami kematian alami sebesar p.
7. Tidak ada individu yang mengalami kematian karena penyakit campak.
Berdasarkan asumsi-asumsi yang diberikan, maka untuk membangun model dinotasikan parameter-
parameter yang bernilai positif sebagai berikut:
K menyatakan jumlah kelahiran.
u menyatakan laju kematian pada masing-masing subpopulasi.
p menyatakan proporsi populasi yang telah divaksinasi, dengan 0 < p < 1.
B menyatakan laju transmisi (Iaju kontak) individu yang rentan dengan individu yang terinfeksi penyakit
campak.
y menyatakan laju kesembuhan individu terinfeksi
6. & menyatakan laju individu dari subpopulasi yang sembuh ke subpopulasi rentan.
Jumlah total populasi dinotasikan dengan N dan jumlah individu yang lahir tiap periode t diasumsikan
sebesar K.
Berikut ini merupakan diagram alur model S/R pada epidemi penyakit campak dengan memperhatikan
penurunan kekebalan tubuh.
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Gambar 1 Diagram alur model S/R pada epidemi penyakit campak dengan memperhatikan penurunan kekebalan
tubuh

Jadi, model penyebaran penyakit campak tipe S/R dengan memperhatikan penurunan kekebalan tubuh,
mempunyai sistem persamaan diferensial sebagai berikut:

as _ 1 _ _BSt _
a —[gsll p)K + SR T MS
%=7—(V+u)l (1)

E=pK+y1—(5+u)R
Dengan S(0) > 0,1(0) >0, R(0)=0,danS+I+R =N,
. . ds , dl _ dR _ dN
Adapun diketahui, bahwa o + o + = ar maka
K—(uS+ul+uRrR)=0
) K—uN =0

= K = uN
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2.3 Analisis Titik Ekuilibrium

Analisis diawali dengan menentukan titik ekuilibrium sistem, yaitu titik ekuilibrium non-endemik (bebas
penyakit) dan titik ekuilibrium endemik (penyakit tetap bertahan dalam populasi). Titik-titik ekuilibrium diperoleh
dengan membuat laju perubahan setiap subpopulasi sama dengan nol, sehingga diperoleh sistem persamaan aljabar
yang kemudian diselesaikan secara analitis.

2.4 Penentuan Bilangan Reproduksi Dasar

Bilangan reproduksi dasar ditentukan menggunakan metode next generation matrix yang melibatkan
radius spektral. Nilai ini digunakan untuk menggambarkan kemampuan suatu penyakit dalam menyebar di dalam
populasi. Bilangan reproduksi dasar menjadi parameter kunci dalam menentukan apakah penyakit akan punah atau
bertahan dalam jangka panjang.

2.5 Analisis Kestabilan

Analisis kestabilan dilakukan untuk mengetahui sifat kestabilan titik ekuilibrium. Metode yang digunakan
adalah analisis nilai eigen dari matriks Jacobian yang dibentuk dari sistem persamaan diferensial. Titik ekuilibrium
dikatakan stabil asimtotik apabila seluruh nilai eigen memiliki bagian real negatif, dan dikatakan tidak stabil
apabila terdapat nilai eigen dengan bagian real positif.

2.6 Simulasi Numerik

Simulasi numerik dilakukan untuk mendukung hasil analisis teoretis serta menggambarkan dinamika
perubahan jumlah individu pada masing-masing subpopulasi terhadap waktu. Simulasi dilakukan menggunakan
perangkat lunak Matlab dengan beberapa skenario nilai parameter, khususnya untuk melihat pengaruh laju
transmisi, laju kesembuhan, dan penurunan kekebalan tubuh terhadap dinamika penyebaran penyakit campak.

2.7 Tahapan Penelitian

Secara umum, tahapan penelitian ini meliputi:

Studi literatur terkait penyakit campak dan model epidemi SIR.
Pembentukan dan perumusan model matematika.

Penentuan titik ekuilibrium sistem.

Perhitungan bilangan reproduksi dasar.

Analisis kestabilan titik ekuilibrium.

Simulasi numerik dan interpretasi hasil.

Penarikan kesimpulan berdasarkan hasil analisis dan simulasi.

Nk W=

3. HASIL DAN PEMBAHASAN

3.1 Penentuan Titik Ekuilibrium

Titik ekuilibrium non endemik diperoleh dengan membuat laju perubahan masing-masing subpopulasi
ds _dl _ dR

konstan terhadap waktu (t) yaitu kondisi dimana e 0, sehingga Sistem (1) menjadi
(1-p)K + 6R—%—y =0 )
S
Bl y+wi=o0 3)
pK +yl— (6 +wR =0 4)

Berdasarkan persamaan (3), diperoleh
s

1(%—(V+u)) =0

1=0
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Sehingga diperoleh kompartemen S untuk titik ekuilibrium endemik yaitu

wx _ N(y+u)
st = (5)
Keadaan saat I = 0 merupakan syarat perlu untuk memperoleh titik ekuilibrium non endemik, sehingga

dari Persamaan (2) diperoleh bentuk

e (6)
Kemudian dari Persamaan (4), diperoleh
« _ _PK
R =G ™
Lalu substitusikan Persamaan (7) ke Persamaan (6) diperoleh
u(d+up)

Jadi, titik ekuilibrium non endemik adalah
— « ¢ pry _ [(K(6+u—up) pK
Bo = (S%1NRY) _( u(S+u) ’0'(6+u))
Selanjutnya, menentukan titik ekuilibrium endemik. Titik ekuilibrium endemik adalah titik dimana

penyakit pasti akan menyebar pada suatu daerah tertutup dengan I > 0 untuk t —» co. Keadaan saat [ > 0 atau

% — (y + 1) = 0 merupakan syarat perlu untuk memperoleh titik ekuilibrium endemik.

Substitusi Persamaan (5) ke Persamaan (2) diperoleh:
[ = BI(1—-p)K+ SR]—uN(y+u) 9)
Bly+w
Dari persamaan (3.4) diperoleh
_ (pK+yD
k= (5+w) (10)
Kemudian substitusikan Persamaan (10) ke Persamaan (9) diperoleh bentuk
[ = BK(6+u—pup)—uN(yS—uy—ué—u?) (a1
Bu(u+s+y)
Substitusi Persamaan (3.11) ke Persamaan (10), diperoleh
R = PK@p+n)-Nyuly+p)
Bu(u+s+y)
Jadi, titik ekuilibrium endemik adalah

E‘1 — (S**’ I**’ R**)

Dengan
S** — N(Vﬁ"‘ﬂ)
[ = BK(8+u—up)—uN(yS—py—pud—u*)
Bu(u+é+y)
R = PK@p+V)—Nyuly+p)
Bu(u+s+y)

3.2 Bilangan Reproduksi Dasar

Berikut ini penentuan bilangan reproduksi dasar R, dengan menggunakan next generation matrix yang
melibatkan radius spectral.

Dari Sistem (1) diperoleh:

Misalkan X = (S,R), Z = (I) atau didefinisikan sebagai

BSI
FX,2) = (1-p)K+ 6R———p

N
pK +yI— (6 + WR
S
hX,Z) =55 (v + i
Dari titik ekuilibrium non endemik Sistem (1) diperoleh
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_ rox 7% pxy _ [(K(6+u—up) pK
Eo=(S%I"R )_( u(S+p) 'O'(6+u))
N=S"+I"+R" =§ dan X" = (S*,R").

Turunan dari h(X*, Z) terhadap Z adalaH
* s
Dh(X D) lpmg =B = (v + 1)

Sehingga diperoleh
_ * _ S+u—up\
A= Dh(X", Dm0 = B (THbE) = (v + 1)
Karena A = M — Dmaka misalkan M = f8 (agjr—_lgp) dan D = (y + u), sehingga diperoleh
_ -1 _ B+p—up)
Ro =MD" = Grig+w

3.3 Analisis Kestabilan Titik Kesetimbangan
Analisis kestabilan titik ekuilibrium diperoleh berdasarkan matriks Jacobian, untuk itu perlu dibentuk
matriks Jacobian dari Sistem Persamaan (1). Diperoleh matriks Jacobian sebagai berikut,

0 14 —(5+u)J

Teorema 3.1:

Titik kesetimbangan non-endemik E;, bersifat stabil asimtotik jika Ry, < 1 dan tidak stabil jika Ry > 1.

Bukti:

Untuk menganalisis kestabilan titik ekuilibrium non-endemik dapat dilakukan dengan cara melihat nilai
eigen pada matriks Jg . Untuk mendapatkan matriks /g, yaitu dengan mensubstitusi Ey = (S%, 1%, R"), ke

Persamaan (3.12) sehingga diperoleh,
_BS

Je,=|0o E_a o
N
0 14 -B

dengan A= (y +u)dan B = (6 + w)
Sehingga diperoleh nilai eigen
A+w=0
AM=—u<o0
Sehingga diperoleh nilai eigen A, bernilai negatif. Dari Persamaan (15), diperoleh
[(A-E+a)a+B)]=0
AZ=B; —A atau I3=—B < 0
Jika disubstitusikan S* ke 1, maka diperoleh,
B(K(5+IL—HP))
u(s+uw)

=—""r—-0+w
maka 1, < 0, dengan syarat (y + p) >

BK(5+u—up)

Nu(S+u)
Berikut ini merupakan pembuktikan 4, < 0 ekuivalen dengan R, < 1, diketahui bahwa uLN, sehingga
diperoleh:
A, <0
BK(6+u—up)(y+1)

Nu(S+mG+) ¥+ <0
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RoK(y+u1)

e +mw<0
© +wWR —-1)<0
& Ry<1

Karena syarat telah terpenuhi yaitu A1; < 0, 1, < 0, 43 < 0 sehingga ekuivalen dengan Ry < 1 maka
Eo(S*, 1", R™) stabil asimtotik. Jika Ry > 1 maka E,(S*, I, R*) tidak stabil asimtotik.

3.4 Simulasi Numerik
Berikut ini adalah parameter-parameter yang digunakan untuk membuat simulasi numerik analisis
kestabilan titik ekuilibrium endemik model SIR pada Sistem (1).

Tabel 1 Nilai parameter untuk simulasi numerik saat Ry < 1
Parameter Nilai Parameter
0,1
0,15
0,009
0,8
30000
120
D 0,4
(1 — p) 0,6
Nilai-nilai parameter yang digunakan pada simulasi disajikan pada Tabel dengan nilai awal masing-
masing populasi adalah S(0) = 25000, 1(0) = 4500, dan R(0) = 500.
Berdasarkan nilai-nilai parameter pada Tabel (3.1) diperoleh Ry = 0,12, sehingga Ry < 1.

x|z ko=

X 000
Mool oopulas: ifecied
000

14,000 '
12,004 ——

il il

10 020

Jumitah !

§.0%0
)

] . ‘ ‘ : \

e e .  T——
" » 7 200 m am 0 €10 o

1 (dan)

Gambar 2 Grafik perubahan jumlah individu subpopulasi S/R terhadap waktu saat Ry < 1

Berdasarkan Gambar 2 menunjukan bahwa jumlah individu pada subpopulasi rentan nilainya akan selalu
dekat dan stabil dengan S* = 13031 pada waktu t = 530 bulan sampai t = 600 bulan. Jumlah individu pada
subpopulasi terinfeksi akan selalu dekat dan stabil menuju nol dengan I* = 0 dari waktu t = 5 bulan sampai waktu
t = 600 bulan. Jumlah individu pada subpopulasi sembuh akan selalu dekat dan stabil dengan R* = 302 dari
waktu t = 30 bulan sampai waktu t = 600 bulan. Hal ini menunjukkan bahwa jumlah individu pada subpopulasi
rentan, subpopulasi terinfeksi, dan subpopulasi sembuh semakin lama akan menuju titik E, dengan kata lain saat
Ry = 0,12 < 1 maka semakin lama peny akit campak akan hilang dari populasi.

Berikut ini adalah parameter-parameter yang digunakan untuk membuat simulasi numerik analisis
kestabilan titik ekuilibrium endemik model SIR pada Sistem (3.1)
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Tabel 2 Nilai parameter untuk simulasi numerik saat Ry > 1

Parameter Nilai Parameter
B 0,9
0 0,15
U 0,009
y 0,01
N 30000
K 120
p 0,6
(1-p) 0.4
Berdasarkan nilai-nilai parameter pada Tabel 2 diperoleh Ry, = 45,76, sehingga R, > 1.
10 000 y - - - -
N ppopeies ’
< Cm
S
g teamr
fowm
) 10 00g
|
1 : s . - - i
‘ 1% moe we n s )

T (hedln|

Gambar 3 Simulasi perubahan jumlah individu subpopulasi SIR terhadap waktu saat Ry > 1

Berdasarkan Gambar 3 menunjukan bahwa jumlah individu pada subpopulasi rentan nilainya akan selalu

dekat dan stabil dengan S™ = 633 pada waktu t = 10 bulan sampai t = 600 bulan. Jumlah individu pada
subpopulasi terinfeksi akan selalu dekat dan stabil dengan [** = 12122 pada waktu t = 400 bulan sampai t =
600. Jumlah individu pada subpopulasi sembuh akan selalu dekat dan stabil dengan R** = 1178 dari waktu t =
230 bulan sampai waktu t = 600 bulan. Hal ini menunjukkan bahwa jumlah individu pada subpopulasi rentan,
subpopulasi terinfeksi, dan subpopulasi sembuh semakin lama akan menuju titik E; dengan kata lain saat Ry =
45,76 > 1 maka semakin lama penyakit campak akan tetap ada dalam populasi (masih terjadi penyebaran
penyakit) dalam waktu yang cukup lama.

Selanjutnya dilakukan simulasi untuk melihat pengaruh laju transmisi (laju kontak) individu yang rentan

dengan individu yang terinfeksi dengan membandingkan f = 0,1 dan § = 0,4, serta § = 0,9.
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Gambar 4 Perbandingan jumlah individu pada subpopulasi terinfeksi dengan nilai parameter § = 0,1; § = 0,4;
danf =0,9

Pada Gambar 4 menunjukan bahwa semakin tinggi nilai parameter f maka jumlah individu pada
subpopulasi terinfeksi semakin meningkat. Hal ini disebabkan karena individu dari subpopulasi rentan masuk ke
subpopulasi terinfeksi sebesar f5, sehingga jika nilai parameter f semakin kecil maka jumlah individu dari
subpopulasi terinfeksi semakin menurun begitu juga sebaliknya.

Selanjutnya dilakukan simulasi untuk melihat pengaruh laju kesembuhan individu terinfeksi terhadap
subpopulasi sembuh, dengan membandingkan y = 0,05 dany = 0,1, sertay = 0,2.

Gambar 5 Perbandingan jumlah individu pada subpopulasi terinfeksi dengan nilai parameter y = 0,05;y = 0,1;
dany = 0,2

Pada Gambar 5 menunjukan bahwa semakin tinggi nilai parameter y maka jumlah individu pada
subpopulasi sembuh semakin meningkat. Hal ini disebabkan karena individu dari subpopulasi terinfeksi masuk ke
subpopulasi sembuh sebesar y, sehingga jika nilai parameter y semakin kecil maka jumlah individu dari
subpopulasi sembuh semakin menurun begitu juga sebaliknya.

Selanjutnya dilakukan simulasi untuk melihat pengaruh laju individu dari subpopulasi yang sembuh ke
subpopulasi sembuh, dengan membandingkan p = 0,1 danp = 0,4; sertap = 0,9.
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Gambar 6 Perbandingan jumlah individu pada subpopulasi sembuh dengan nilai parameter p = 0,1; p = 0,4;
danp = 0,9.

Pada Gambar 3.6 menunjukkan bahwa semakin tinggi nilai parameter p maka jumlah individu dari
subpopulasi sembuh juga meningkat. Hal ini disebabkan karena nilai parameter p yang masuk ke subpopulasi
sembuh. Dimana p merupakan individu yang sudah divaksin dan kebal.

4. KESIMPULAN DAN SARAN

Model penyebaran penyakit campak tipe S/R dengan memperhatikan penurunan kekebalan tubuh adalah
sebagai berikut:

as _ .. __BSI
E_IE;I p)K + 6R U
= - +wl

dR

- = PK+yl—(6+ )R
dengan S(0) > 0,1(0) = 0,R(0) >0,danS + 1+ R = N, untuk t = 0
Model penyebaran penyakit campak tipe S/R dengan memperhatikan penurunan kekebalan tubuh
mempunyai dua titik ekuilibrium yaitu titik ekuilibrium non endemik dan titik ekuilibrium endemik. Titik

ekuilibrium non endemik, yaitu
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_ rox 7% pxy _ [(K(6+u—up) pK
Eo = (51" R") = ( e ,o,(m))
dan titik ekuilibrium endemik, yaitu E; = (8™, I**, R*™)
dengan
S** — N(];;’H)
[ = BK (8+u—pp)—pN(yS—py—ps—pu?)

Bu(u+é+y)
R*™ = BK(up+y)—Nyp(y+up)

Bu(u+d+y)
Bilangan reproduksi dasar (R,) ditentukan dengan menggunakan metode next generation matrix yang
melibatkan radius spektral. Hasil penentuan R, dengan metode tersebut diperoleh
B(8+p—pp)
G+w)(y+u)
Berdasarkan hasil analisis kestabilan titik ekuilibrium menunjukkan bahwa saat Ry < 1, maka titik

ekuilibrium non endemik E| stabil asimtotik. Interpretasi dari hasil tersebut adalah jika syarat Ry < 1 terpenuhi,
maka dalam waktu yang cukup lama tidak akan terjadi penyebaran penyakit campak pada subpopulasi yang rentan
dan subpopulasi terinfeksi atau dengan kata lain wabah penyakit tersebut akan berhenti.

Dari hasil simulasi numerik, terbukti bahwa hasil analisis kestabilan titik ekuilibrium non endemik
dinyatakan stabil jika Ry < 1 dan hasil analisis kestabilan titik ekuilibrium endemik dinyatakan stabil jika Ry >

Dari hasil simulasi numerik juga, menunjukkan bahwa jumlah individu dari subpopulasi sembuh akan
meningkat jika nilai parameter p semakin tinggi, hal ini juga dipengaruhi oleh penurunan kekebalan tubuh
sehingga individu yang sembuh kembali masuk ke subpopulasi rentan. Jumlah individu dari subpopulasi terinfeksi
akan meningkat jika nilai parameter § semakin tinggi. Jumlah individu dari subpopulasi sembuh akan meningkat
jika nilai parameter y semakin tinggi.
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