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Abstrak 

 

Penyakit campak merupakan penyakit menular yang disebabkan oleh virus dan masih menjadi masalah 

kesehatan masyarakat, meskipun upaya pencegahan melalui imunisasi terus dilakukan. Salah satu pendekatan 

untuk memahami dinamika penyebaran penyakit campak adalah melalui pemodelan matematika epidemiologi. 

Penelitian ini mengkaji model epidemi tipe SIR (Susceptible–Infected–Recovered) pada penyakit campak dengan 

memperhatikan adanya penurunan kekebalan tubuh, sehingga individu yang telah sembuh berpotensi kembali 

menjadi rentan. Analisis dilakukan dengan menentukan titik ekuilibrium non-endemik dan endemik, menghitung 

bilangan reproduksi dasar menggunakan metode next generation matrix yang melibatkan radius spektral, serta 

menganalisis kestabilan titik ekuilibrium melalui matriks Jacobian. Hasil analisis menunjukkan bahwa titik 

ekuilibrium non-endemik bersifat stabil asimtotik ketika nilai bilangan reproduksi dasar kurang dari satu, dan 

menjadi tidak stabil ketika nilainya lebih besar dari satu. Simulasi numerik menggunakan perangkat lunak Matlab 

mendukung hasil analisis teoretis serta menunjukkan bahwa penurunan kekebalan tubuh berpengaruh signifikan 

terhadap dinamika jumlah individu pada masing-masing subpopulasi. Dengan demikian, model ini dapat 

memberikan gambaran matematis mengenai pengaruh kekebalan terhadap keberlangsungan penyebaran penyakit 

campak dalam suatu populasi tertutup. 
 

Kata Kunci: Model SIR, Penyakit Campak, Titik Ekuilibrium, Bilangan Reproduksi Dasar, Kestabilan Model. 

 
 

1. PENDAHULUAN 

 

Penyakit campak (measles) merupakan penyakit menular yang disebabkan oleh virus campak dari genus 

Morbillivirus dan famili Paramyxoviridae. Penyakit ini umumnya ditandai dengan gejala prodromal berupa 

demam, batuk, pilek, dan konjungtivitis, yang kemudian diikuti dengan munculnya ruam makulopapular di seluruh 

tubuh. Campak bersifat sangat menular dan dapat menimbulkan komplikasi serius seperti bronkitis, pneumonia, 

hingga ensefalitis yang berpotensi menyebabkan kematian (Widoyono, 2008; Setiawan et al., 2008). Oleh karena 

itu, campak masih menjadi salah satu permasalahan kesehatan masyarakat, khususnya di wilayah dengan cakupan 

imunisasi yang belum optimal. 

Upaya pencegahan penyakit campak telah dilakukan melalui program imunisasi. Menurut World Health 

Organization (WHO), vaksinasi campak mampu menurunkan angka kematian akibat campak secara signifikan, 

bahkan mencegah jutaan kematian secara global dalam kurun waktu dua dekade terakhir (WHO, 2019). Meskipun 

demikian, dalam praktiknya masih ditemukan kasus campak berulang di beberapa wilayah. Hal ini menunjukkan 

bahwa pengendalian penyakit campak tidak hanya dipengaruhi oleh tingkat vaksinasi, tetapi juga oleh faktor lain 

seperti penurunan kekebalan tubuh pada individu yang sebelumnya telah sembuh atau divaksinasi. 

Salah satu pendekatan yang dapat digunakan untuk memahami dinamika penyebaran penyakit menular 

adalah melalui pemodelan matematika epidemiologi. Model epidemi tipe SIR (Susceptible–Infected–Recovered) 

pertama kali diperkenalkan oleh Kermack dan McKendrick (1927) dan hingga kini banyak digunakan untuk 

menganalisis penyebaran penyakit infeksi. Model ini membagi populasi ke dalam tiga subpopulasi utama, yaitu 

individu rentan (susceptible), individu terinfeksi (infected), dan individu sembuh (recovered) (Murray, 2002). 
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Seiring perkembangan penelitian, model SIR telah mengalami berbagai pengembangan, seperti penambahan faktor 

vaksinasi, struktur umur, dan perubahan tingkat kekebalan tubuh (Hethcote, 2000; Brauer & Castillo-Chavez, 

2000). 

Beberapa penelitian terdahulu telah mengkaji model SIR pada berbagai penyakit menular, termasuk 

penyakit campak. Lestari dan Tasman (2013) mengkaji pengaruh strategi pulse vaccination dalam pencegahan 

penyebaran penyakit campak, sementara Abubakar et al. (2013) menganalisis bifurkasi pada model matematika 

dinamika penyakit campak. Selain itu, Aulia et al. (2016) mengembangkan model epidemi dengan memperhatikan 

peluang keberhasilan vaksinasi dan kekebalan tetap. Namun demikian, kajian yang secara khusus memperhatikan 

kemungkinan individu yang telah sembuh kembali menjadi rentan akibat penurunan kekebalan tubuh masih relatif 

terbatas, padahal kondisi tersebut berpotensi memengaruhi dinamika penyebaran penyakit dalam jangka panjang. 

Berdasarkan uraian tersebut, penelitian ini bertujuan untuk mengkaji model matematika penyebaran 

penyakit campak tipe SIR dengan memperhatikan penurunan kekebalan tubuh. Analisis dilakukan dengan 

menentukan titik ekuilibrium non-endemik dan endemik, menghitung bilangan reproduksi dasar menggunakan 

metode next generation matrix, serta menganalisis kestabilan sistem menggunakan matriks Jacobian. Selain itu, 

dilakukan simulasi numerik untuk menggambarkan dinamika perubahan jumlah individu pada masing-masing 

subpopulasi. Hasil penelitian ini diharapkan dapat memberikan pemahaman yang lebih mendalam mengenai 

dinamika penyebaran penyakit campak serta menjadi dasar pertimbangan dalam perumusan strategi pengendalian 

penyakit. 
 

 

2. METODE PENELITIAN 

 

Penelitian ini merupakan penelitian teoretis dengan pendekatan analitis dan numerik yang bertujuan untuk 

mengkaji dinamika penyebaran penyakit campak menggunakan model matematika epidemiologi tipe SIR 

(Susceptible–Infected–Recovered). Model yang digunakan dimodifikasi dengan memperhatikan adanya 

penurunan kekebalan tubuh, sehingga individu yang telah sembuh memiliki kemungkinan kembali menjadi rentan 

terhadap penyakit campak. 

 

2.1 Jenis dan Pendekatan Penelitian 

Pendekatan yang digunakan dalam penelitian ini adalah pendekatan kualitatif–kuantitatif melalui analisis 

matematika. Analisis kualitatif dilakukan untuk mengkaji sifat-sifat model, seperti keberadaan titik ekuilibrium 

dan kestabilannya, sedangkan analisis kuantitatif dilakukan melalui simulasi numerik untuk menggambarkan 

perilaku solusi sistem persamaan diferensial. 

 

2.2 Pembentukan Model 

Model epidemi yang digunakan adalah model SIR dengan populasi tertutup, sehingga tidak terdapat 

migrasi masuk maupun keluar dari populasi. Populasi dibagi ke dalam tiga subpopulasi, yaitu individu rentan 

(Susceptible), individu terinfeksi (Infected), dan individu sembuh (Recovered). Dalam model ini diasumsikan 

bahwa individu yang telah sembuh dapat kembali ke subpopulasi rentan akibat penurunan kekebalan tubuh. Model 

dinyatakan dalam bentuk sistem persamaan diferensial nonlinear orde satu yang merepresentasikan laju perubahan 

masing-masing subpopulasi terhadap waktu. 

Model matematis epidemiologi SIR (Susceptible, Infected, Recovered) pertama kali diperkenalkan oleh 

Kermack dan Mc. Kendrick pada tahun 1927. Model tersebut terdiri dari tiga kategori yaitu: susceptible (S) atau 

individu yang rentan terserang penyakit, Infected (I) atau individu yang terinfeksi dan dapat menyebarkan penyakit 

tersebut kepada individu yang rentan dan recovered (R) atau individu yang diasumsikan telah sembuh atau 

kekebalan tubuhnya telah kembali normal sehingga kebal terhadap penyakit (Murray, 2002).  

Berikut ini merupakan asumsi-asumsi yang dibuat dalam pembentukan model penyebaran penyakit 

campak tipe SIR dengan laju kematian yang beragam tiap subpopulasi. 

1. Populasi tertutup (tidak ada migrasi). 
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2. Individu yang sukses divaksinasi masuk ke subpopulasi R dan tidak sukses divaksinasi masuk ke 

subpopulasi S. 

3. Individu subpopulasi S yang kontak dengan individu subpopulasi I, masuk ke subpopulasi I. 

4. Individu yang terinfeksi dan mengalami kekebalan alamiah masuk ke subpopulasi R. 

5. Individu subpopulasi R yang mengalami penurunan kekebalan terhadap penyakit kembali ke subpopulasi 

S. 

6. Individu dalam masing-masing subpopulasi mengalami kematian alami sebesar 𝜇. 

7. Tidak ada individu yang mengalami kematian karena penyakit campak. 

Berdasarkan asumsi-asumsi yang diberikan, maka untuk membangun model dinotasikan parameter-

parameter yang bernilai positif sebagai berikut: 

1. 𝐾 menyatakan jumlah kelahiran. 

2. 𝜇 menyatakan laju kematian pada masing-masing subpopulasi. 

3. p  menyatakan proporsi populasi yang telah divaksinasi, dengan 0 < 𝑝 < 1. 

4. 𝛽 menyatakan laju transmisi (laju kontak) individu yang rentan dengan individu yang terinfeksi penyakit 

campak. 

5. 𝛾 menyatakan laju kesembuhan individu terinfeksi 

6. 𝛿 menyatakan laju individu dari subpopulasi yang sembuh ke subpopulasi rentan. 

Jumlah total populasi dinotasikan dengan N dan  jumlah  individu yang lahir tiap periode t diasumsikan 

sebesar K. 

Berikut ini merupakan diagram alur model SIR pada epidemi penyakit campak dengan memperhatikan 

penurunan kekebalan tubuh. 

 
Gambar 1 Diagram alur model SIR pada epidemi penyakit campak dengan memperhatikan penurunan kekebalan 

tubuh 

 

Jadi, model penyebaran penyakit campak tipe SIR dengan memperhatikan penurunan kekebalan tubuh, 

mempunyai sistem persamaan diferensial sebagai berikut: 
𝑑𝑆

𝑑𝑡
= (1 − 𝑝)𝐾 +  𝛿𝑅 −

𝛽𝑆𝐼

𝑁
− 𝜇𝑆  

𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− (𝛾 + 𝜇)𝐼          (1) 

𝑑𝑅

𝑑𝑡
= 𝑝𝐾 + 𝛾𝐼 − (𝛿 + 𝜇)𝑅  

Dengan 𝑆(0) > 0, 𝐼(0) ≥ 0,      𝑅(0) ≥ 0, dan 𝑆 + 𝐼 + 𝑅 = 𝑁, 

Adapun diketahui, bahwa  
𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
=

𝑑𝑁

𝑑𝑡
, maka 

 𝐾 − ( 𝜇𝑆 + 𝜇𝐼 + 𝜇𝑅) = 0 

⇔                          𝐾 − 𝜇𝑁 = 0 

⇔                                     𝐾 = 𝜇𝑁 
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2.3 Analisis Titik Ekuilibrium 

Analisis diawali dengan menentukan titik ekuilibrium sistem, yaitu titik ekuilibrium non-endemik (bebas 

penyakit) dan titik ekuilibrium endemik (penyakit tetap bertahan dalam populasi). Titik-titik ekuilibrium diperoleh 

dengan membuat laju perubahan setiap subpopulasi sama dengan nol, sehingga diperoleh sistem persamaan aljabar 

yang kemudian diselesaikan secara analitis. 

 

2.4 Penentuan Bilangan Reproduksi Dasar 

Bilangan reproduksi dasar ditentukan menggunakan metode next generation matrix yang melibatkan 

radius spektral. Nilai ini digunakan untuk menggambarkan kemampuan suatu penyakit dalam menyebar di dalam 

populasi. Bilangan reproduksi dasar menjadi parameter kunci dalam menentukan apakah penyakit akan punah atau 

bertahan dalam jangka panjang. 

 

2.5 Analisis Kestabilan 

Analisis kestabilan dilakukan untuk mengetahui sifat kestabilan titik ekuilibrium. Metode yang digunakan 

adalah analisis nilai eigen dari matriks Jacobian yang dibentuk dari sistem persamaan diferensial. Titik ekuilibrium 

dikatakan stabil asimtotik apabila seluruh nilai eigen memiliki bagian real negatif, dan dikatakan tidak stabil 

apabila terdapat nilai eigen dengan bagian real positif. 

 

2.6 Simulasi Numerik 

Simulasi numerik dilakukan untuk mendukung hasil analisis teoretis serta menggambarkan dinamika 

perubahan jumlah individu pada masing-masing subpopulasi terhadap waktu. Simulasi dilakukan menggunakan 

perangkat lunak Matlab dengan beberapa skenario nilai parameter, khususnya untuk melihat pengaruh laju 

transmisi, laju kesembuhan, dan penurunan kekebalan tubuh terhadap dinamika penyebaran penyakit campak. 

 

2.7 Tahapan Penelitian 

Secara umum, tahapan penelitian ini meliputi: 

1. Studi literatur terkait penyakit campak dan model epidemi SIR. 

2. Pembentukan dan perumusan model matematika. 

3. Penentuan titik ekuilibrium sistem. 

4. Perhitungan bilangan reproduksi dasar. 

5. Analisis kestabilan titik ekuilibrium. 

6. Simulasi numerik dan interpretasi hasil. 

7. Penarikan kesimpulan berdasarkan hasil analisis dan simulasi. 

 

 

3. HASIL DAN PEMBAHASAN 

 

3.1 Penentuan Titik Ekuilibrium 

Titik ekuilibrium non endemik diperoleh dengan membuat laju perubahan masing-masing subpopulasi 

konstan terhadap waktu (t) yaitu kondisi dimana 
𝑑𝑆

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0, sehingga Sistem (1) menjadi 

(1 − 𝑝)𝐾 +  𝛿𝑅 −
𝛽𝑆𝐼

𝑁
− 𝜇𝑆 = 0         (2) 

𝛽𝑆𝐼

𝑁
− (𝛾 + 𝜇)𝐼 = 0           (3) 

𝑝𝐾 + 𝛾𝐼 − (𝛿 + 𝜇)𝑅 = 0          (4) 

Berdasarkan persamaan (3), diperoleh 

𝐼 (
𝛽𝑆

𝑁
− (𝛾 + 𝜇)) = 0  

𝐼 = 0   



https://jurnal.unsulbar.ac.id/index.php/saintifik 

169 

Analisis Titik Kesetimbangan Model Epidemi pada Penyakit Campak (Abraham & Tandiangnga) 

Sehingga diperoleh kompartemen S untuk titik ekuilibrium endemik yaitu 

𝑆∗∗ =
𝑁(𝛾+𝜇)

𝛽
            (5) 

Keadaan saat 𝐼 = 0 merupakan syarat perlu untuk memperoleh titik ekuilibrium non endemik, sehingga 

dari Persamaan (2) diperoleh bentuk 

𝑆 =
((1−𝑝)𝐾+ 𝛿𝑅∗)

𝜇
           (6) 

Kemudian dari Persamaan (4), diperoleh 

𝑅∗ =
𝑝𝐾

(𝛿+𝜇)
            (7) 

Lalu substitusikan Persamaan (7) ke Persamaan (6) diperoleh 

𝑆∗ =
𝐾(𝛿+𝜇−𝜇𝑝)

𝜇(𝛿+𝜇)
           (8) 

Jadi, titik ekuilibrium non endemik adalah 

 𝐸0 = (𝑆∗, 𝐼∗, 𝑅∗) = (
𝐾(𝛿+𝜇−𝜇𝑝)

𝜇(𝛿+𝜇)
, 0,

𝑝𝐾

(𝛿+𝜇)
 ) 

Selanjutnya, menentukan titik ekuilibrium endemik. Titik ekuilibrium endemik adalah titik dimana 

penyakit pasti akan menyebar pada suatu daerah tertutup dengan 𝐼 > 0 untuk t → ∞. Keadaan saat 𝐼 > 0 atau 
𝛽𝑆

𝑁
− (𝛾 + 𝜇) = 0 merupakan syarat perlu untuk memperoleh titik ekuilibrium endemik.  

Substitusi Persamaan (5) ke Persamaan (2) diperoleh: 

𝐼 =
𝛽[(1−𝑝)𝐾+ 𝛿𝑅]−𝜇𝑁(𝛾+𝜇)

𝛽(𝛾+𝜇)
          (9) 

Dari persamaan (3.4) diperoleh 

𝑅 =
(𝑝𝐾+𝛾𝐼)

(𝛿+𝜇)
            (10) 

Kemudian substitusikan Persamaan (10) ke Persamaan (9) diperoleh bentuk 

𝐼∗∗ =
𝛽𝐾(𝛿+𝜇−𝜇𝑝)−𝜇𝑁(𝛾𝛿−𝜇𝛾−𝜇𝛿−𝜇2)

𝛽𝜇(𝜇+𝛿+𝛾)
         (11) 

Substitusi Persamaan (3.11) ke Persamaan (10), diperoleh 

𝑅∗∗ =
𝛽𝐾(𝜇𝑝+𝛾)−𝑁𝛾𝜇(𝛾+𝜇)

𝛽𝜇(𝜇+𝛿+𝛾)
    

Jadi, titik ekuilibrium endemik adalah 

𝐸1 = (𝑆∗∗, 𝐼∗∗, 𝑅∗∗)  

Dengan 

𝑆∗∗ =
𝑁(𝛾+𝜇)

𝛽
  

𝐼∗∗ =
𝛽𝐾(𝛿+𝜇−𝜇𝑝)−𝜇𝑁(𝛾𝛿−𝜇𝛾−𝜇𝛿−𝜇2)

𝛽𝜇(𝜇+𝛿+𝛾)
  

𝑅∗∗ =
𝛽𝐾(𝜇𝑝+𝛾)−𝑁𝛾𝜇(𝛾+𝜇)

𝛽𝜇(𝜇+𝛿+𝛾)
  

 

3.2 Bilangan Reproduksi Dasar 

Berikut ini penentuan bilangan reproduksi dasar 𝑅0 dengan menggunakan next generation matrix yang 

melibatkan radius spectral. 

Dari Sistem (1) diperoleh: 

Misalkan  𝑋 = (𝑆, 𝑅),   𝑍 = (𝐼) atau didefinisikan sebagai 

 𝑓(𝑋, 𝑍) = [
(1 − 𝑝)𝐾 +  𝛿𝑅 −

𝛽𝑆𝐼

𝑁
− 𝜇𝑆

𝑝𝐾 + 𝛾𝐼 − (𝛿 + 𝜇)𝑅
]  

ℎ(𝑋, 𝑍) =
𝛽𝑆𝐼

𝑁
− (𝛾 + 𝜇)𝐼  

Dari titik ekuilibrium non endemik Sistem (1) diperoleh 
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𝐸0 = (𝑆∗, 𝐼∗, 𝑅∗) = (
𝐾(𝛿+𝜇−𝜇𝑝)

𝜇(𝛿+𝜇)
, 0,

𝑝𝐾

(𝛿+𝜇)
 )  

𝑁 = 𝑆∗ + 𝐼∗ + 𝑅∗ =
𝐾

𝜇
     dan     𝑋∗ = (𝑆∗, 𝑅∗). 

Turunan dari ℎ(𝑋∗, 𝑍) terhadap 𝑍 adalaH 

𝐷𝑧ℎ(𝑋∗, 𝑍)|𝑧=0 =
𝛽𝑆∗

𝑁
− (𝛾 + 𝜇)  

Sehingga diperoleh 

𝐴 = 𝐷𝑧ℎ(𝑋∗, 𝑍)|𝑧=0 = 𝛽 (
𝛿+𝜇−𝜇𝑝

(𝛿+𝜇)
) − (𝛾 + 𝜇) 

 Karena 𝐴 = 𝑀 − 𝐷maka misalkan  𝑀 = 𝛽 (
𝛿+𝜇−𝜇𝑝

(𝛿+𝜇)
) dan 𝐷 = (𝛾 + 𝜇), sehingga diperoleh 

R0 = 𝑀𝐷−1 =
𝛽(𝛿+𝜇−𝜇𝑝)

(𝛿+𝜇)(𝛾+𝜇)
  

 

3.3 Analisis Kestabilan Titik Kesetimbangan 

Analisis kestabilan titik ekuilibrium diperoleh berdasarkan matriks Jacobian, untuk itu perlu dibentuk 

matriks Jacobian dari Sistem Persamaan (1). Diperoleh matriks Jacobian sebagai berikut, 

𝐽(𝑆, 𝐼, 𝑅) =

[
 
 
 −

𝛽𝐼

𝑁
− 𝜇 −

𝛽𝑆

𝑁
𝛿

𝛽𝐼

𝑁

𝛽𝑆

𝑁
− (𝛾 + 𝜇) 0

0 𝛾 −(𝛿 + 𝜇)]
 
 
 

      (12) 

Teorema 3.1: 

Titik kesetimbangan non-endemik 𝐸0 bersifat stabil asimtotik jika 𝑅0 < 1 dan tidak stabil jika 𝑅0 > 1.  

Bukti: 

Untuk menganalisis kestabilan titik ekuilibrium non-endemik dapat dilakukan dengan cara melihat nilai 

eigen pada matriks 𝐽𝐸0
. Untuk mendapatkan matriks 𝐽𝐸0

 yaitu dengan mensubstitusi 𝐸0 = (𝑆∗, 𝐼∗, 𝑅∗), ke 

Persamaan (3.12) sehingga diperoleh, 

𝐽𝐸0
=

[
 
 
 −𝜇 −

𝛽𝑆∗

𝑁
𝛿

0
𝛽𝑆∗

𝑁
− 𝐴 0

0 𝛾 −𝐵]
 
 
 
  

dengan  𝐴 = (𝛾 + 𝜇) dan 𝐵 = (𝛿 + 𝜇) 

Sehingga diperoleh nilai eigen 
(𝜆 + 𝜇) = 0   

  𝜆1 = −𝜇 < 0  

Sehingga diperoleh nilai eigen 𝜆1 bernilai negatif. Dari Persamaan (15), diperoleh 

[(𝜆 −
𝛽𝑆∗

𝑁
+ 𝐴) (𝜆 + 𝐵)] = 0  

𝜆2 =
𝛽𝑆∗

𝑁
− 𝐴    atau   𝜆3 = −𝐵 <  0 

Jika disubstitusikan 𝑆∗ ke 𝜆2 maka diperoleh,   

𝜆2 =
𝛽(

𝐾(𝛿+𝜇−𝜇𝑝)

𝜇(𝛿+𝜇)
)

𝑁
− (𝛾 + 𝜇)  

maka 𝜆2 < 0, dengan syarat (𝛾 + 𝜇) >
𝛽𝐾(𝛿+𝜇−𝜇𝑝)

𝑁𝜇(𝛿+𝜇)
. 

Berikut ini merupakan pembuktikan 𝜆2 < 0 ekuivalen dengan 𝑅0 < 1, diketahui bahwa 
𝐾

𝜇𝑁
, sehingga 

diperoleh: 

𝜆2 < 0  

⇔ 
𝛽𝐾(𝛿+𝜇−𝜇𝑝)(𝛾+𝜇)

𝑁𝜇(𝛿+𝜇)(𝛾+𝜇)
− (𝛾 + 𝜇) < 0  
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⇔ 
𝑅0𝐾(𝛾+𝜇)

𝑁𝜇
− (𝛾 + 𝜇) < 0  

⇔ (𝛾 + 𝜇)(𝑅0 − 1) < 0  

⇔  𝑅0 < 1  

Karena syarat telah terpenuhi yaitu  𝜆1 < 0, 𝜆2 < 0, 𝜆3 < 0 sehingga ekuivalen dengan 𝑅0 < 1 maka 

 𝐸0(𝑆
∗, 𝐼∗, 𝑅∗) stabil asimtotik. Jika 𝑅0 > 1 maka 𝐸0(𝑆

∗, 𝐼∗, 𝑅∗) tidak stabil asimtotik. 

 

3.4 Simulasi Numerik 

Berikut ini adalah parameter-parameter yang digunakan untuk membuat simulasi numerik analisis 

kestabilan titik ekuilibrium endemik model SIR pada Sistem (1). 

 

Tabel 1 Nilai parameter untuk simulasi numerik saat 𝑅0 < 1 

Parameter Nilai Parameter 

𝛽 0,1 

𝛿 0,15 

𝜇 0,009 

𝛾 0,8 

𝑁 30000 

𝐾 120 

𝑝 0,4 

(1 − 𝑝) 0,6 

Nilai-nilai parameter yang digunakan pada simulasi disajikan pada Tabel dengan nilai awal masing-

masing populasi adalah 𝑆(0) = 25000, 𝐼(0) = 4500, dan 𝑅(0) = 500. 

Berdasarkan nilai-nilai parameter pada Tabel (3.1) diperoleh  𝑅0 = 0,12 , sehingga 𝑅0 < 1. 

 

 
Gambar 2 Grafik perubahan jumlah individu subpopulasi SIR terhadap waktu saat 𝑅0 < 1 

 

Berdasarkan Gambar 2 menunjukan bahwa jumlah individu pada subpopulasi rentan nilainya akan selalu 

dekat dan stabil dengan 𝑆∗ = 13031 pada waktu 𝑡 = 530 bulan sampai 𝑡 = 600 bulan. Jumlah individu pada 

subpopulasi terinfeksi akan selalu dekat dan stabil menuju nol dengan 𝐼∗ = 0 dari waktu 𝑡 = 5 bulan sampai waktu 

𝑡 = 600 bulan. Jumlah individu pada subpopulasi sembuh akan selalu dekat dan stabil dengan 𝑅∗ = 302 dari 

waktu 𝑡 = 30 bulan sampai waktu 𝑡 = 600 bulan. Hal ini menunjukkan bahwa jumlah individu pada subpopulasi 

rentan, subpopulasi terinfeksi, dan subpopulasi sembuh semakin lama akan menuju titik 𝐸0 dengan kata lain saat 

𝑅0 = 0,12 < 1 maka semakin lama peny akit campak akan hilang dari populasi. 

Berikut ini adalah parameter-parameter yang digunakan untuk membuat simulasi numerik analisis 

kestabilan titik ekuilibrium endemik model SIR pada Sistem (3.1) 
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Tabel 2 Nilai parameter untuk simulasi numerik saat 𝑅0 > 1 

Parameter Nilai Parameter 

𝛽 0,9 

𝛿 0,15 

𝜇 0,009 

𝛾 0,01 

𝑁 30000 

𝐾 120 

𝑝 0,6 

(1 − 𝑝) 0,4 

Berdasarkan nilai-nilai parameter pada Tabel 2 diperoleh 𝑅0 = 45,76, sehingga 𝑅0 > 1. 

 
Gambar 3 Simulasi perubahan jumlah individu subpopulasi SIR terhadap waktu saat 𝑅0 > 1 

 

Berdasarkan Gambar 3 menunjukan bahwa jumlah individu pada subpopulasi rentan nilainya akan selalu 

dekat dan stabil dengan  𝑆∗∗ = 633 pada waktu 𝑡 = 10 bulan sampai 𝑡 = 600 bulan. Jumlah individu pada 

subpopulasi terinfeksi akan selalu dekat dan stabil dengan 𝐼∗∗ = 12122  pada waktu 𝑡 = 400 bulan sampai 𝑡 =
600. Jumlah individu pada subpopulasi sembuh akan selalu dekat dan stabil dengan 𝑅∗∗ = 1178 dari waktu 𝑡 =
230 bulan sampai waktu 𝑡 = 600 bulan. Hal ini menunjukkan bahwa jumlah individu pada subpopulasi rentan, 

subpopulasi terinfeksi, dan subpopulasi sembuh semakin lama akan menuju  titik 𝐸1 dengan kata lain saat 𝑅0 =
45,76 > 1 maka semakin lama penyakit campak akan tetap ada dalam populasi (masih terjadi penyebaran 

penyakit) dalam waktu yang cukup lama. 

Selanjutnya dilakukan simulasi untuk melihat pengaruh laju transmisi (laju kontak) individu yang rentan 

dengan individu yang terinfeksi dengan membandingkan 𝛽 = 0,1 dan 𝛽 = 0,4, serta 𝛽 = 0,9. 
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Gambar 4 Perbandingan jumlah individu pada subpopulasi terinfeksi dengan nilai parameter 𝛽 = 0,1; 𝛽 = 0,4; 

dan 𝛽 = 0,9 

Pada Gambar 4 menunjukan bahwa semakin tinggi nilai parameter 𝛽 maka jumlah individu pada 

subpopulasi terinfeksi semakin meningkat. Hal ini disebabkan karena individu dari subpopulasi rentan masuk ke 

subpopulasi terinfeksi sebesar 𝛽, sehingga jika nilai parameter 𝛽 semakin kecil maka jumlah individu dari 

subpopulasi terinfeksi semakin menurun begitu juga sebaliknya. 

Selanjutnya dilakukan simulasi untuk melihat pengaruh laju kesembuhan individu terinfeksi terhadap 

subpopulasi sembuh, dengan membandingkan 𝛾 = 0,05 dan 𝛾 = 0,1, serta 𝛾 = 0,2. 

 

Gambar 5 Perbandingan jumlah individu pada subpopulasi terinfeksi dengan nilai parameter 𝛾 = 0,05; 𝛾 = 0,1; 

dan 𝛾 = 0,2 

 

Pada Gambar 5 menunjukan bahwa semakin tinggi nilai parameter 𝛾 maka jumlah individu pada 

subpopulasi sembuh semakin meningkat. Hal ini disebabkan karena individu dari subpopulasi terinfeksi masuk ke 

subpopulasi sembuh sebesar 𝛾, sehingga jika nilai parameter 𝛾 semakin kecil maka jumlah individu dari 

subpopulasi sembuh semakin menurun begitu juga sebaliknya. 

Selanjutnya dilakukan simulasi untuk melihat pengaruh laju individu dari subpopulasi yang sembuh ke 

subpopulasi sembuh, dengan membandingkan 𝑝 = 0,1 dan 𝑝 = 0,4; serta 𝑝 = 0,9. 

 
Gambar 6 Perbandingan jumlah individu pada subpopulasi sembuh dengan nilai parameter 𝑝 = 0,1; 𝑝 = 0,4; 

dan 𝑝 = 0,9. 

 

Pada Gambar 3.6 menunjukkan bahwa semakin tinggi nilai parameter 𝑝 maka jumlah individu dari 

subpopulasi sembuh juga meningkat. Hal ini disebabkan karena nilai parameter 𝑝 yang masuk ke subpopulasi 

sembuh. Dimana 𝑝 merupakan individu yang sudah divaksin dan kebal. 

 

4. KESIMPULAN DAN SARAN 

 

Model penyebaran penyakit campak tipe SIR dengan memperhatikan penurunan kekebalan tubuh adalah 

sebagai berikut: 
𝑑𝑆

𝑑𝑡
= (1 − 𝑝)𝐾 +  𝛿𝑅 −

𝛽𝑆𝐼

𝑁
− 𝜇𝑆  

𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− (𝛾 + 𝜇)𝐼  

𝑑𝑅

𝑑𝑡
= 𝑝𝐾 + 𝛾𝐼 − (𝛿 + 𝜇)𝑅  

dengan 𝑆(0) > 0, 𝐼(0) ≥ 0, 𝑅(0) ≥ 0, dan 𝑆 + 𝐼 + 𝑅 = 𝑁, untuk 𝑡 = 0 

Model penyebaran penyakit campak tipe SIR dengan memperhatikan penurunan kekebalan tubuh 

mempunyai dua titik ekuilibrium yaitu titik ekuilibrium non endemik dan titik ekuilibrium endemik. Titik 

ekuilibrium non endemik, yaitu 
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𝐸0 = (𝑆∗, 𝐼∗, 𝑅∗) = (
𝐾(𝛿+𝜇−𝜇𝑝)

𝜇(𝛿+𝜇)
, 0,

𝑝𝐾

(𝛿+𝜇)
 )  

dan titik ekuilibrium endemik, yaitu 𝐸1 = (𝑆∗∗, 𝐼∗∗, 𝑅∗∗)  

dengan 

𝑆∗∗ =
𝑁(𝛾+𝜇)

𝛽
  

𝐼∗∗ =
𝛽𝐾(𝛿+𝜇−𝜇𝑝)−𝜇𝑁(𝛾𝛿−𝜇𝛾−𝜇𝛿−𝜇2)

𝛽𝜇(𝜇+𝛿+𝛾)
  

𝑅∗∗ =
𝛽𝐾(𝜇𝑝+𝛾)−𝑁𝛾𝜇(𝛾+𝜇)

𝛽𝜇(𝜇+𝛿+𝛾)
  

Bilangan reproduksi dasar (𝑅0) ditentukan dengan menggunakan metode next generation matrix yang 

melibatkan radius spektral. Hasil penentuan 𝑅0 dengan metode tersebut diperoleh 

R0 =
𝛽(𝛿+𝜇−𝜇𝑝)

(𝛿+𝜇)(𝛾+𝜇)
  

Berdasarkan hasil analisis kestabilan titik ekuilibrium menunjukkan bahwa saat 𝑅0 < 1, maka titik 

ekuilibrium non endemik 𝐸0 stabil asimtotik. Interpretasi dari hasil tersebut adalah jika syarat 𝑅0 < 1 terpenuhi, 

maka dalam waktu yang cukup lama tidak akan terjadi penyebaran penyakit campak pada subpopulasi yang rentan 

dan subpopulasi terinfeksi atau dengan kata lain wabah penyakit tersebut akan berhenti.  

Dari hasil simulasi numerik, terbukti bahwa hasil analisis kestabilan titik ekuilibrium non endemik 

dinyatakan stabil jika 𝑅0 < 1 dan hasil analisis kestabilan titik ekuilibrium endemik dinyatakan stabil jika 𝑅0 > 

Dari hasil simulasi numerik juga, menunjukkan bahwa jumlah individu dari subpopulasi sembuh akan 

meningkat jika nilai parameter 𝑝 semakin tinggi, hal ini juga dipengaruhi oleh penurunan kekebalan tubuh 

sehingga individu yang sembuh kembali masuk ke subpopulasi rentan. Jumlah  individu dari subpopulasi terinfeksi 

akan meningkat jika nilai parameter 𝛽 semakin tinggi. Jumlah  individu dari subpopulasi sembuh akan meningkat 

jika nilai parameter 𝛾 semakin tinggi. 
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